Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579464

RESUMO

Increasing socioecological systems (SESs) sustainability requires establishing a reasonable cross-regional social and ecological interaction. In this study, we examine how cross-regional ecological and social interactions affect synergistic effects. Using InVEST and correlation analysis with data from 2010 through 2020, we assessed ESs (i.e., water retention-WR, nutrient retention-NR, and carbon storage-CS) in the Beijing-Tianjin-Hebei (BTH) region. A small watershed, a river network, and settlement development capacity are used to delineate ecological and social interactions units. Based on a Bayesian network model that considers population, economy, and spatial agglomeration patterns between social units, we assessed the potential for achieving a synergistic improvement of ESs and the driving forces behind them. The results show that ESs in the BTH region compete, only a small percentage (6.38%) shows synergetic improvement across CS, WR, and NR. It is beneficial for upstream watersheds to retain water and nutrients, but to maintain carbon storage they may sacrifice water retention. Upstream areas with less development and higher vegetation density have better ecosystem integrity of up- and down-stream watersheds, and can be enhanced with minimal human impact, as social interactions and settlement spatial structures influence ES synergies. There is a higher risk for ecological issues in downstream areas, but greater awareness and collaboration can lead to better ES synergies.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Teorema de Bayes , Carbono , Água , China
2.
Nat Commun ; 15(1): 2251, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480716

RESUMO

Accelerating efforts for the Sustainable Development Goals requires understanding their synergies and trade-offs at the national and sub-national levels, which will help identify the key hurdles and opportunities to prioritize them in an indivisible manner for a country. Here, we present the importance of the 17 goals through synergy and trade-off networks. Our results reveal that 19 provinces show the highest trade-offs in SDG13 (Combating Climate Change) or SDG5 (Gender Equality) consistent with the national level, with other 12 provinces varying. 24 provinces show the highest synergies in SDG1 (No Poverty) or SDG6 (Clean Water and Sanitation) consistent with the national level, with the remaining 7 provinces varying. These common but differentiated SDG priorities reflect that to ensure a coordinated national response, China should pay more attention to the provincial situation, so that provincial governments can formulate more targeted policies in line with their own priorities towards accelerating sustainable development.


Assuntos
Políticas , Desenvolvimento Sustentável , China , Pobreza , Mudança Climática
3.
Sci Total Environ ; 914: 169917, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199376

RESUMO

Agriculture contributes considerable greenhouse gas emissions while feed the constantly expanding world population. The challenge of balancing food security with emissions reduction to create a mutually beneficial situation is paramount. However, assessing targeted mitigation potential for agricultural emissions remains challenging, lacking comprehensive sub-national evaluations. Here, we have meticulously compiled the agricultural greenhouse gas emission inventories of China spanning the years 2000 to 2019, employing spatial analysis techniques to identify regional characteristics. We find that the peak of China's agricultural production emissions occurred in 2015 (1.03 × 109 tCO2 equivalent), followed by a valley in 2019 (0.94 tCO2 equivalent), largely attributed to shifts in livestock-related activities. Notably, methane emissions were the most dominant greenhouse gas, the Hunan province emerged as a prominent contributor, livestock raising stood out as a major activity, and enteric fermentation ranked as the primary emission source. There were substantial differences in the emission structure and sources among the provinces. Further spatial analysis showed geographical disparities in both total emissions and per capita emissions. The west-east blocked spatial characteristics of per capita emissions at the Hu Line sides emerged. We advocate that tailored mitigation strategy focusing on specific emission sources and regions can achieve substantial progress with minimal effort.

4.
Environ Sci Pollut Res Int ; 31(1): 481-493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015405

RESUMO

An important breakthrough in the coordinated development of China's low-carbon goals and food security strategies is agricultural development oriented toward quality, safety, green, and low carbon. This study integrated command-control and market-incentive environmental regulation (ER), agricultural eco-efficiency (ACEE), and food quality and safety (FQS) into a unified theoretical framework. The unexpected output-oriented Super-SBM model was used to calculate the ACEE of China's provinces and cities from 2011 to 2020 and test the bidirectional causality between ACEE and FQS through the system generalized moment estimation model. A dynamic panel smooth transition (PSTR) model was used to explore the nonlinear impact mechanisms of different types of ERs on ACEE and FQS. The results showed that there was a long-term, two-way causal relationship between ACEE and FQS. The impact of environmental regulations on ACEE and FQS has a nonlinear relationship. Among them, the role of market-incentivized ER is more significant. Therefore, building an interregional coordinated development mechanism, improving the utilization rate of agricultural resources such as fertilizers and pesticides, and coordinating the positive effects of different types of ERs are the keys to improving the ACEE and ensuring the coordinated development of FQS.


Assuntos
Carbono , Eficiência , Carbono/análise , Agricultura , Qualidade dos Alimentos , Inocuidade dos Alimentos , China , Desenvolvimento Econômico
5.
Sci Total Environ ; 912: 169523, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141977

RESUMO

China faces significant pressure on cultivated land resources due to the accelerated pace of urbanization in recent years. The study of embodied cultivated land offers a new perspective on alleviating pressure on cultivated land between different regions. However, the temporal dynamics characteristic and the intersectoral linkages of embodied cultivated land have rarely been systematically described. Therefore, we applied an environmental extended multi-regional input-output approach to analyze the spatial patterns and flow relationships of virtual cultivated land (VCL) between regional, provincial and sectoral scale in China from 2007 to 2017, considering both temporal and spatial dimensions. Then, we explored the hidden drivers of VCL change using structural decomposition analysis (SDA). Our results showed that trade embodied cultivated land increase by 8.5 % from 2007 to 2017. The flow trend is primarily flowed out from the less developed northwest China but with abundant cultivated land to the more developed regions of the southeast coast. Especially, in 2015, the net outflow of VCL from the northwest region reached 15.82 Mha, which was the maximum value during the study period. In addition, agricultural and construction sector were the major land consumption sector. VCL consumed by the agricultural sector declined 12.51 %, while the VCL consumed by construction sector had a significant growth in 2007-2017. Furthermore, the results of SDA revealed that cultivated land use intensity and per capita final demand were the main factors causing changes in embodied cultivated land. The results can help clarify the responsible parties for land consumption and provide a guarantee for alleviating the pressure on regional cultivated land resources.

6.
J Environ Manage ; 348: 119494, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37924696

RESUMO

Livestock is an important source of greenhouse gas emissions (GHGE) in China. Understanding the greenhouse gas (GHG) emission trends and reduction strategies in livestock is crucial for promoting low-carbon transformation of the livestock sector (LS) and achieving the goal of "carbon peak and carbon neutralization". First, based on the life cycle assessment and IPCC coefficient methods, we calculated the GHGE of the LS in 31 provinces of China from 2000 to 2020 and identified the temporal and spatial evolution of GHG emission intensity. The LMDI method was then used to analyze the influence of efficiency, structure, economy, and population size on GHGE. Finally, the STIRPAT model was used to simulate the future evolution trend of the LS emissions under the SSPs scenario. The results revealed that the GHGE in the life cycle of livestock production decreased from 535.47 Mt carbon dioxide equivalent (CO2e) in 2000 to 532.18 Mt CO2e in 2020, and the main source was CH4 emissions from enteric fermentation of livestock. Economic and efficiency factors markedly influenced the changes in GHGE from the LS in China. Further, economic factors contributed >40% to the increase in GHGE in most provinces. Under the SSP1, SSP2, and SSP4 scenarios, livestock production can achieve the carbon peak target in 2030. Under the baseline scenario (SSP2), the GHGE of China's LS in 2030 and 2060 are expected to be 491.48 Mt CO2e and 352.11 Mt CO2e, respectively. The focus of mitigation measures for livestock production in the future is to optimize the production structure of the LS, promote the low-carbon transformation of the energy structure of livestock feeding, and establish an efficient and intensive management model. In addition, we focus on emission reduction in key areas, such as Northeast and Northwest China, while optimizing diet and reducing food waste from the consumer side.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Animais , Efeito Estufa , Gado , Alimentos , China
7.
Sci Total Environ ; 903: 166805, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690751

RESUMO

Changes in land-use structure and pattern can affect both atmospheric CO2 concentrations and the terrestrial carbon budget. To explore the effects of non-uniformly distributed CO2 concentration on terrestrial carbon uptake under land-use changes, this study integrated global CO2 concentrations, Net Primary Productivity (NPP), and land-use data under historical period and SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios from 1850 to 2100. Land-use intensity (LUI) and the CO2 correlation to NPP were calculated using partial correlation analysis by controlling LUI. The results showed that NPP growth over the forest was the highest among the land-use types, reaching 0.54 g C·m2, 2.06 g C·m2 and 4.64 g C·m2, respectively, under SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios. Among all the scenarios, the average correlation levels of atmospheric CO2 and NPP considering the LUI effect and controlling LUI ranged respectively from 0.34 to 0.68 and from 0.32 to 0.61 at a 5 % level of significance. It suggested that sensible land use planning might enhance the CO2 fertilization effect and that rises in CO2 concentrations could stimulate terrestrial carbon absorption. The findings add to the body of knowledge about the effects of atmospheric CO2 on terrestrial carbon uptake and serve as a scientific guide for protecting terrestrial carbon stocks and managing land use.

8.
Environ Dev Sustain ; : 1-19, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37363032

RESUMO

Food security and the utilization of natural resources in a sustainable manner are vital to the expansion of China's agricultural system. The relationship between environmental pressure and dietary structure has influenced the quantity and spatial distribution of China's food supply and demand, but it has not been evaluated. Our research centered on the security of China's food nutrition-resources-food (NRF) system, considering the inherent relationship between food security, nutritional health, and resource security. The following are the study's findings: (1) The Chinese population is rapidly changing from a diet focused on grains to a more diverse diet. Between 1990 and 2019, the dietary quality and nutritional status of Chinese individuals have vastly improved. In terms of nutrient levels, discrepancies between urban and rural resident persist, with urban residents consuming a diet that is closer to the ideal structure. However, the structure of rural residents' food consumption is diversifying, and the gap between urban and rural residents is gradually narrowing. (2) From 2000 to 2019, the pressure, status, and response indices of China's NRF system all show an upward trend, and the security of the NRF system has steadily grown. The magnitude of change in the response index exceeded that of the state index, which exceeded that of the pressure index. This indicates that the increase in the pressure and state indices of the NRF system was primarily attributable to the effectiveness of policy efforts.

9.
Sci Data ; 9(1): 83, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277521

RESUMO

Increases in atmospheric carbon dioxide (CO2) concentrations is the main driver of global warming due to fossil fuel combustion. Satellite observations provide continuous global CO2 retrieval products, that reveal the nonuniform distributions of atmospheric CO2 concentrations. However, climate simulation studies are almost based on a globally uniform mean or latitudinally resolved CO2 concentrations assumption. In this study, we reconstructed the historical global monthly distributions of atmospheric CO2 concentrations with 1° resolution from 1850 to 2013 which are based on the historical monthly and latitudinally resolved CO2 concentrations accounting longitudinal features retrieved from fossil-fuel CO2 emissions from Carbon Dioxide Information Analysis Center. And the spatial distributions of nonuniform CO2 under Shared Socio-economic Pathways and Representative Concentration Pathways scenarios were generated based on the spatial, seasonal and interannual scales of the current CO2 concentrations from 2015 to 2150. Including the heterogenous CO2 distributions could enhance the realism of global climate modeling, to better anticipate the potential socio-economic implications, adaptation practices, and mitigation of climate change.

10.
Environ Sci Pollut Res Int ; 27(20): 25415-25433, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32347508

RESUMO

Land use and land cover changes (LULCC) significantly affect the climate at regional and global levels through different biogeophysical and biogeochemical processes. However, the effects of biogeophysical aspects of LULCC on climate have been often ignored, which may overestimate the biogeochemical effects on climate change. Thus, understanding the biogeophysical influence of land use changes on climate change in future potential scenarios is crucial. Therefore, it is necessary to identify the mechanism and land use change impacts on future climate under different scenarios through changes in underlying surface and surface energy balance. In order to fill this research gap, three simulations are performed by Weather Research Forecasting (WRF) model for the year 2010-2030 under Business-As-Usual (BAU) scenario, Rapid Economic Growth (REG) scenario, and Coordinated Environmental Sustainability (CES) scenario to evaluate the influence of future LULCC on temperature projections for the Punjab province in Pakistan. Results show that land use conversions under three scenarios induce overall climate cooling in the region. The decrease in annual average temperature in CES scenario (- 0.02 °C) is slightly greater than that in BAU and REG scenarios (- 0.01 °C). The responses of temperature to future LULCC vary in different months in all scenarios, with greater responses in warmer months, causing climate cooling. In each scenario, the response of temperature is found to be sensitive to different land transitions. The findings of the study can be a reference for policy makers, researchers, and development practitioners in their pursuit to understand the effects of land use change on climate.


Assuntos
Mudança Climática , Desenvolvimento Econômico , Previsões , Modelos Teóricos , Paquistão
11.
Sci Total Environ ; 726: 138339, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32325298

RESUMO

As global warming worsens, climatic conditions in many regions are undergoing profound change, which could influence certain industries, such as agriculture and transportation, and affect the livability of cities. In this study, cities statistics and meteorological station data of the past decade in China were used to analyze the effect of climate change on cities livability. The livability of 288 Chinese cities during 2006-2016 was assessed using an analytic hierarchy process method. Results showed the mean cities livability index in China has improved about 12% throughout the past decade. Moreover, the Moran's I statistic and local indicators of spatial association revealed that the distribution of cities livability reflects a trend of gradual spatial agglomeration. In addition, geostatistical analysis was used to evaluate the impact of extreme weather events on cities livability. It was established that heatwaves and extreme precipitation events have significant impact on the livability of cities in southern China, whereas freezing weather drives the change of urban livability in northern areas. Combinations of different extreme weather conditions will have greater impact on urban livability. Based on mobile phone user data, the relationship between livability change and climate change in Chinese cities was elucidated to provide reference for urban environmental management.

12.
Sci Total Environ ; 707: 136032, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31972910

RESUMO

Humans have increasingly intervened in the nature to advance socioeconomic development at the expense of ecosystem services. Tradeoffs between ecosystem services and socioeconomic development are inevitable and should be considered in sustainable ecosystem management. This is no exception in Zhangye where intensive agricultural activities have significantly affected its ecological conditions. Thus, this study evaluated the tradeoffs between agricultural production and key ecosystem services along with their spatial distributions at the watershed level in Zhangye based on multisource observation data. The key ecosystem services, including net primary productivity (NPP), water yield, and soil conservation, were evaluated for the years 2000, 2010, and 2015 using remote sensing data and the InVEST model. The Morishima elasticity of substitution (MES) between these ecosystem services and agricultural production were then estimated by applying a quadratic directional output distance function, and mapped to determine the tradeoffs. The results showed that the average NPP and annual water yield respectively increased by 22% and 24%, while annual soil conservation decreased by 22% during 2000-2015. The average MES values for agricultural production with NPP, water yield, and soil conservation were 0.14, -0.69, and -0.56, respectively. This indicated the existence of a synergetic relationship between agricultural production and NPP as well as tradeoff relationships between agricultural production and water yield/soil conservation. Differences in the spatial patterns of the relationships between agricultural production and these ecosystem services were observed. Significant tradeoff relationships were observed for agricultural production with water yield and soil conservation in the upper reach of Zhangye. It indicated that increasing agricultural production would be at the cost of decreased water yield and soil conservation, especially in the upper reach area. The quantification and spatial pattern determinations of tradeoffs between ecosystem services and agricultural production is useful for the development of regional ecological conservation policy and sustainable ecosystem management.

13.
PLoS One ; 14(9): e0222534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31568514

RESUMO

In light of the problem of environmental pollution caused by fossil fuel combustion, and its association with rapid urbanization, China is grappling with the question of how to reduce carbon emissions through more efficient energy consumption while simultaneously advancing its economic development. We applied a directional distance function to estimate the carbon emission performance of 30 provinces in China during the period 2000-2016. We selected an index system to assess urbanization processes in these provinces and conducted a spatial analysis to investigate the relationship between urbanization and carbon emission performance. We obtained the following results. First, the carbon emission performance of the eastern region, valued at 0.853, was relatively higher than the corresponding values of 0.810, 0.804, and 0.843 in the central, western, and northeastern regions, respectively. However, during this period, disparities among provinces increased. Second, the average urbanization value for each province showed an upward trend during the study period, and urbanization assumed a "striped" spatial agglomeration pattern. A third finding was that carbon emission performance and urbanization demonstrated a relationship of positive spatial dependence. The average value of their coordinated coupling indicated an upward trend, with an annual increase of 0.85%. Last, we found that efforts to reduce carbon emissions that are solely based on carbon emission performance do not yield reliable results. Accordingly, measurements of urbanization values can enable more detailed differentiation. In conclusion, reasonable measures should be implemented to improve carbon emission performance and urbanization that are in alignment with the actual situation within a given region.


Assuntos
Carbono/análise , Desenvolvimento Econômico , Poluição Ambiental/análise , Urbanização , China , Análise Espacial
14.
Sci Adv ; 4(6): eaaq0390, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29963621

RESUMO

As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city-level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption-based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure.


Assuntos
Mudança Climática , Clima , Monitoramento Ambiental , Dióxido de Carbono/análise , China , Cidades , Geografia , Indústrias
15.
Proc Natl Acad Sci U S A ; 115(33): E7700-E7709, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30012617

RESUMO

Long-term changes in land use, climate, and agricultural technologies may affect pest severity and management. The influences of these major drivers can only be identified by analyzing long-term data. This study examines panel data on land use, adoption of genetically modified Bacillus thuringiensis (Bt) insect-resistant cotton, weather, pest severity, and insecticide use on three major cotton pests for 51 counties in China during 1991-2015. Bt cotton had pervasive effects on the whole pest complex in cotton and its management. Adoption resulted in major reductions in insecticide use for bollworm control. The resulting restoration of aphid biological control decreased aphid severity. However, mirid bugs, which have few effective natural enemies in cotton, increased in severity with warming May and reduced insecticide spraying against bollworm. The effects of landscape on pest severity were pest specific. The severity of cotton aphid and mirid bugs decreased with higher land use diversity, but the severity of highly polyphagous cotton bollworm was unrelated to land use diversity. Shares of forest, water body, and unused land area were negatively associated with the severity of mirid bugs, whereas cotton bollworm responded positively to the shares of water body and unused land area. Farmers sprayed insecticides at mild infestation levels and responded aggressively to severe bollworm outbreaks. Findings support the usefulness of Bt-based plant resistance as a component of integrated pest management (IPM) but highlight the potential for unexpected outcomes resulting from agro-ecosystem feedback loops as well as the importance of climate.


Assuntos
Agricultura , Bacillus thuringiensis/genética , Gossypium/genética , Controle Biológico de Vetores/métodos , Tempo (Meteorologia) , Animais , Afídeos , Inseticidas/farmacologia , Mariposas
16.
Nature ; 559(7713): 193-204, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995865

RESUMO

China has responded to a national land-system sustainability emergency via an integrated portfolio of large-scale programmes. Here we review 16 sustainability programmes, which invested US$378.5 billion (in 2015 US$), covered 623.9 million hectares of land and involved over 500 million people, mostly since 1998. We find overwhelmingly that the interventions improved the sustainability of China's rural land systems, but the impacts are nuanced and adverse outcomes have occurred. We identify some key characteristics of programme success, potential risks to their durability, and future research needs. We suggest directions for China and other nations as they progress towards the Sustainable Development Goals of the United Nations' Agenda 2030.


Assuntos
Solo , Desenvolvimento Sustentável/tendências , Agricultura , Biodiversidade , China , Conservação dos Recursos Naturais , Abastecimento de Alimentos , Florestas , Objetivos , Pradaria , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/legislação & jurisprudência , Fatores de Tempo , Nações Unidas , Água
17.
Sci Rep ; 8(1): 9079, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899341

RESUMO

The Three-River Headwaters region (TRHR) of China is an important part of the Qinghai-Tibetan Plateau. Although the TRHR is rich in grassland resources, the ecosystem of this area is extremely fragile. Natural and artificial interference have been key to the development of grassland ecosystem spatiotemporal heterogeneity, although the intensity and mode of their influence on ecological processes varies depending on scale; analyses in this area are therefore also scale-dependent. We use multi-scale nested data to analyze the mechanisms underlying the influence of climate change and human activities on grassland net primary productivity (NPP) by applying a multi-level modeling approach. The results of this study show that: (1) The annual grassland NPP of the TRHR has risen in a wavelike pattern over time, increasing by 39.88% overall; (2) Differences of 54.9% and 41.1% in temporal grassland NPP can be attributed to variations between these watersheds as well as county characteristics, and; (3) Although the 'warm and moist' climate trend seen over the course of this study has proved beneficial in enhancing grassland NPP, the rate of increase has tended to be faster in relatively dry and warm regions. Economic development and population growth have both exerted negative impacts on grassland NPP.

18.
Sci Total Environ ; 636: 597-609, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723833

RESUMO

Increasing human activities worldwide have significantly altered the natural ecosystems and consequently, the services they provide. This is no exception in Nigeria, where land-use/land-cover has undergone a series of dramatic changes over the years mainly due to the ever-growing large population. However, estimating the impact of such changes on a wide range of ecosystem services is seldom attempted. Thus, on the basis of GlobeLand30 land-cover maps for 2000 and 2010 and using the value transfer methodology, we evaluated changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. The results showed that over the 10-year period, cultivated land sprawl over the forests and savannahs was predominant, and occurred mainly in the northern region of the country. During this period, we calculated an increase in the total ecosystem services value (ESV) in Nigeria from 665.93 billion (2007 US$) in 2000 to 667.44 billion (2007 US$) in 2010, 97.38% of which was contributed by cultivated land. The value of provisioning services increased while regulation, support, recreation and culture services decreased, amongst which, water regulation (-11.01%), gas regulation (-7.13%), cultural (-4.84%) and climate regulation (-4.3%) ecosystem functions are estimated as the most impacted. The increase in the total ESV in Nigeria associated with the huge increase in ecosystem services due to cultivated land expansion may make land-use changes (i.e. the ever-increasing agricultural expansion in Nigeria) appear economically profitable. However, continuous loss of services such as climate and water regulation that are largely provided by the natural ecosystems can result in huge economic losses that may exceed the apparent gains from cultivated land development. Therefore, we advocate that the conservation of the natural ecosystem should be a priority in future land-use management in Nigeria, a country highly vulnerable to climate change and incessantly impacted by natural disasters such as flooding.

19.
Sci Total Environ ; 576: 705-719, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810757

RESUMO

As a result of economics and policy, land-use/land-cover change (LUCC) in China has undergone a series of complicated changes over the past three decades. However, the effects of LUCCs on ecosystem service values (ESVs) have never been previously assessed at the national scale. Thus, on the basis of three Chinese LUCC maps from 1988, 2000, and 2008, we examined changes in land-use/land-cover and consequent ESVs using a value transfer method. We found that ESVs decreased by 0.45% and 0.10% during the periods 1988-2000 and 2000-2008, respectively, and that ESV changes in China during the period 2000-2008 were relatively moderate compared to the rest of the world over a similar period. The ESVs for provision, regulation, support, and culture decreased by 0.19%, 0.48%, 0.43%, and 0.45%, respectively, during the period 1988-2000, while they decreased by 0.11%, 0.09%, 0.14%, and 0.04%, respectively, during the period 2000-2008. We also developed an elasticity indicator to assess responses in ESV change relative to LUCCs. Results of this analysis show that 1% of land conversion in China resulted in 0.15% and 0.10% average changes in ESVs during the two periods, respectively.

20.
Ying Yong Sheng Tai Xue Bao ; 25(12): 3627-36, 2014 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-25876417

RESUMO

The sizes and number of cities in China are increasing rapidly and complicated changes of urban land use system have occurred as the social economy develops rapidly. This study took the urban agglomeration of Pearl River Delta Region as the study area to explore the driving mechanism of dynamic changes of urban area in the urbanization process under the joint influence of natural environment and social economic conditions. Then the CA (cellular automata) model was used to predict and simulate the urban area changes until 2030 under the designed scenarios of planning and RCPs (representative concentration pathways). The results indicated that urbanization was mainly driven by the non-agricultural population growth and social-economic development, and the transportation had played a fundamental role in the whole process, while the areas with high elevation or steep slope restricted the urbanization. Besides, the urban area would keep an expanding trend regardless of the scenarios, however, the expanding speed would slow down with different inflection points under different scenarios. The urban expansion speed increased in the sequence of the planning scenario, MESSAGE scenario and AIM scenario, and that under the MESSAGE climate scenario was more consistent with the current urban development trend. In addition, the urban expansion would mainly concentrate in regions with the relatively high urbanization level, e.g., Guangzhou, Dongguan, Foshan, Shenzhen, Zhanjiang and Chaoshan.


Assuntos
Urbanização , China , Cidades , Clima , Desenvolvimento Econômico , Meio Ambiente , Modelos Teóricos , Crescimento Demográfico , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...